Streams

1. Define a stream ones with an infinite number of 1s

2. Define a procedure (integers-starting n) that takes in a number n and, when run, returns a cons pair whose car is n, and whose cdr is a procedure that, when run with no arguments, does the same thing for n+1.

3. What do each of these define?

 (define s1 (add-stream (stream-map (lambda(x) (* x 2)) s1) s1))

 (define s2
 (cons-stream 1
 (add-stream (stream-map (lambda(x) (* x 2)) s2) s2)))

 (define s3
 (cons-stream 1
 (stream-filter (lambda(x) (not (= x 1))) s3)))

 (define s4
 (cons-stream 1
 (cons-stream 2
 (stream-filter (lambda(x) (not (= x 1))) s4))))

 (define s5
 (cons-stream 1
 (add-streams s5 integers)))

6. Define facts without defining any procedures; the stream should be a stream of 1!, 2!, 3!, 4!, etc. More specifically, it returns a stream with elements (1 2 6 24)

7. Define a procedure, (list-to-stream ls) that takes in a list and converts it into a stream.
8. Define a procedure (lists-starting n) that takes in n and returns a stream containing (n), (n n+1), (n n+1 n+2), etc. For example, (lists-starting 1) returns a stream containing (1) (1 2) (1 2 3) (1 2 3 4)

9. Define a procedure (make-alternating s) that takes in a stream of positive numbers and alternate their signs. So (make-alternating ones) returns (1 -1 1 -1) and (make-alternating integers) returns (1 -2 3 -4). Assume s is an infinite stream.

10. Construct a stream all-integers that includes 0 and both the negative and positive integers. Hint: You should use make-alternating

11. Given streams ones, twos, threes and fours, write down the first ten elements of: (interleave ones (interleave twos (interleave threes fours)))