
Programming Self-Optimizing Workflows for
Crowdsourcing – A Status Report

Christopher H. Lin Mausam Daniel S. Weld
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{chrislin,mausam,weld}@cs.washington.edu

August 15, 2013

Crowdsourcing requesters are trapped between a rock and a hard place. Typically
they specify their crowdsourcing workflows procedurally, but current languages com-
mit them to overly strict and static policies that waste human effort. While optimizing
workflows with more sophisticated artificial intelligence tools can significantly reduce
labor costs [1, 2], such techniques are hard to use and understand. We present CLOW-
DER, a system that allows users to easily procedurally program self-optimizing work-
flows for crowdsourcing.

CLOWDER provides an adaptive programming language (extending [5, 4] to handle
partial observability and non-expert usability) that abstracts over and compiles into a
partially observable Markov decision process. For instance, suppose a requester would
like to write a dynamic workflow that uses crowdsourcing to label data. Specifically,
the requester has a set of questions, possible answer choices, and a budget. We envision
a language that allows the requester to write the program in Figure 1. The program first
initializes a couple of arrays to count the number of votes for each answer choice given
by the crowd. Then, while the budget has not been exhausted, the variable i is set to
be one of several choices. If i is −1, the program terminates and returns the answers
with the most votes. Otherwise, the program calls crowd-vote, an API call to some
crowdsourcing platform that hires a worker to provide a label for question i.

While current methods can only allow users to program static policies (e.g., ask 2
workers, and then ask a third to break ties), the choose functionality of CLOWDER
enables intelligent and adaptive use of the budget. At run-time, CLOWDER will dynam-
ically pick the best choice of the variable i. For instance, CLOWDER may decide that
given the current history, question number 2 needs more input from voters, because the
crowd has not been agreeing on the correct answer. Or perhaps at some point, CLOW-
DER will decide that question 9 is far too difficult, and will no longer expend any of its
budget in obtaining labels for that question. CLOWDER can do this optimization using
a single algorithm. In other words, given any program the user writes, CLOWDER au-
tomatically determines the best choices at runtime. Figure 2 shows another example of

1

// returns a list of the answers with the most votes
def vote(questions, answers0, answers1, budget):

counts0 = [0,...,0], counts1 = [0,...,0]
while (budget > 0):

i = choose([-1, 0,...,|questions|])
if i == -1: break
if crowd-vote(questions[i], answers0[i], answers1[i]):

counts0[i] += 1
else: counts1[i] += 1
budget -= 1

return getBest(answers0, answers1, counts0, counts1)

Figure 1: Binary Labeling

a common workflow written in our language. It is a program that a user might write
that uses iterative-improvement [3] to crowdsource a caption for an image.

CLOWDER works by relying on experts to define probabilistic models for primitive
API calls like crowd-vote and c-imp as well as modules to elicit goals and utilities
from users. Using a crowdsourced library of basic functions, CLOWDER alows end-
users to optimize their crowdsourcing programs. We have currently implemented a
first version of CLOWDER, which uses a Lisp-like language, for ease of interpretation.
More details on related projects about decision-theoretic control of workflows can be
found at the authors’ webpages or at http://www.cs.washington.edu/node/3528/.

References
[1] Peng Dai, Mausam, and Daniel S. Weld. Decision-theoretic control of crowd-sourced work-

flows. In AAAI, 2010.

[2] Ece Kamar, Severin Hacker, and Eric Horvitz. Combining human and machine intelligence
in large-scale crowdsourcing. In AAMAS, 2012.

[3] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. Turkit: tools for iterative
tasks on mechanical turk. In KDD-HCOMP, pages 29–30, 2009.

[4] David McAllester. Bellman equations for stochastic programs, 1999.

[5] Jervis Pinto, Alan Fern, Tim Bauer, and Martin Erwig. Robust learning for adaptive pro-
grams by leveraging program structure. In ICMLA, 2010.

2

def iterative-improvement(image, budget):
better-text = ’’, worse-text = ’’
while (budget > 0):

i = choose([0,1,2])
case i == 0: //improve

worse-text = better-text
better-text = c-imp(image, better-text) //API Call
budget -= 5

case i == 1: //vote
if vote([image], [better-text],

[worse-text], budget)[0] == worse-text:
temp = better-text
better-text = worse-text
worse-text = temp

case i == 2:
break

return better-text

Figure 2: Iterative-Improvement

3

